

Fact Sheet: "Szyb Maciej" Complex

April 2020

Description

"Szyb Maciej" today is a historic facility of the former "Concordia" mine, located in Zabrze-Maciejów. It has been undergoing transformation since the 1990s, already as part of the heritage of hard coal mining in Zabrze and Silesia. The former building of the pit head houses an elegant restaurant in the industrial style, a "high voltage" bistro, and a visitors centre. On the topmost level of the pit head, where once there was the main mining level, a banquet hall has been arranged. The adjacent wood yard is a place where a railway overpass once linking the mine to Gliwice and Bytom is situated. The complex is disabled-accessible, it has car parks and convenient access roads from the A1 motorway and the DK88 national road.

The "Szyb Maciej" complex, erected in the early 20th century, constituted a group of buildings and structures with a shaft and overground infrastructure intended for extraction of hard coal deposits in the western part of the mining area of the "Concordia" mine. Hard coal extraction in the vicinity of the "Maciej" shaft ended in 1978, and in 1992 the "Pstrowski" mine, which the "Concordia" mine was part of, decided to liquidate the underground and overground structures of the "Maciej" shaft completely. In this situation, the "Pstrowski" mine accepted a project submitted by Przedsiębiorstwo Górnicze Demex sp. z o.o. and agreed to withdraw from the shaft liquidation, to have it transformed into a water intake, and to resell the entire complex to the Company.

During the mine closure, Przedsiębiorstwo Górnicze DEMEX Sp. z o.o. developed a project to transform the shaft into a water intake. The proposed project envisaged the liquidation of the lower section of the shaft, and in the upper part of the shaft a device for shaft water intake fed from the Triassic origin crossing the shaft at a depth of about 70 - 80m. In 1993 the project was carried out and since then the water intake has been operating as originally intended.

The shaft has two deep-well pumps draining water to the nearby Water Station, from where it is passed on to the recipients after filtering through gravel filters. The water from the intake is medium-mineralized calcium-magnesium water with excellent taste properties and a constant temperature of approx. 8-9°C.

Fig. 1. "Szyb Maciej" after revitalization (source of photo: https://metropolia.slaskie.travel/)

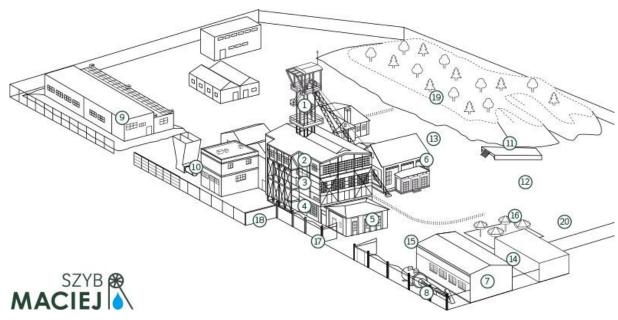


Fig. 2. Design of "Szyb Maciej" complex: 1. Shaft tower – signalman's station; 2. Level 9.60; 3. "Szyb Maciej" Restaurant; 4. "Szyb Maciej" Bistro; 5. Visitors' centre; 6. Engine room; 7. Switch room; 8. Steam engine; 9. Water station; 10. Ventilation duct – water intake; 11. Stage by the overpass; 12. Square by the overpass; 13. Barometer; 14. Water power engine; 15. Steel zoo; 16. Summer garden; 17. Fortune bell; 18. Maciej's Water; 19. Slag heap; 20. Playground.

Achievements

The greatest highlights of "Szyb Maciej" include:

- a 2-storey restaurant arranged in the main building of the mine;
- preserved buildings and furnishings of the former mine from the early 20th century;
- possibility of seeing Zabrze and Gliwice from a viewing platform on the shaft tower;
- getting down to the shaft water intake and learning about its origins;
- engine room with an electrically-driven still operating double-drum winding machine; possibility of attending a demonstration of the winding machine operation;
- exposition of active devices and equipment of the former mine;
- example of sustainable revitalisation of a former mining complex.

Challenges

"Szyb Maciej" is an excellent venue for organising a birthday party, a wedding anniversary, a jubilee, an engagement party, or a hen/stag party. The authentic architecture of the place and the presence of modern design and historical space create unique interiors – a perfect setting for an unforgettable event.

"Szyb Maciej" for business is an offer addressed to corporate clients, companies, and local governmental institutions engaged in business contacts. Our offer comprises organisation of meetings in "Szyb Maciej" for up to 120 attendees at the level of business units or management boards of entities, as well as organisation of conferences for up to 300 attendees and fairs in the postindustrial space of the former Control Room of the "Ludwik-Concordia" Mine.

Enabling conditions

The "Szyb Maciej" complex invites visitors to Poland's one and only restaurant of the type and encourages them to visit and learn about the history and flavours deriving from the ground and

water, to take part in meetings with culture and entertainment during such events as Industriada, "Szyb Maciej" Ekstremalnie, Chillouts, Nowe Brzmienia, etc.

The "Szyb Maciej" complex is the only preserved authentic mine of the kind in Europe. The complex is included in the register of monuments. It is also part of the Industrial Monuments Trail and the Silesian Tastes Culinary Trail.

References and further links

https://szybmaciej.pl/en/

https://www.zabytkitechniki.pl/en-us/Poi/Pokaz/1700/64/maciej-shaft

https://slaskie.travel/cs-CZ/Poi/Pokaz/511447/19/szyb-maciej-restaurant

https://zabytek.pl/en/obiekty/zabrze-zespol-zabudowy-szybu-maciej

www.tracer-h2020.eu

Authors

Bartłomiej Woś, University of Agriculture in Krakow (UAK), Poland Marcin Pietrzykowski, University of Agriculture in Krakow (UAK), Poland Marcin Chodak, University of Agriculture in Krakow (UAK), Poland Justyna Likus-Cieślik, University of Agriculture in Krakow (UAK), Poland Marek Pająk, University of Agriculture in Krakow (UAK), Poland

Editors

Christian Doczekal, Güssing Energy Technologies (GET), Austria

Contact

University of Agriculture in Krakow Marcin Pietrzykowski Email: m.pietrzykowski@ur.edu.pl, Al. Mickiewicza 21 31-120 Krakow www.urk.edu.pl

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 836819. The sole responsibility for the content of this report lies with the authors.